Skip to main content

How Rules of Physics in Quantum World Change When Applied to Classical World

How Rules of Physics in Quantum World Change When Applied to Classical World


Dartmouth researchers have discovered a potentially important piece of the quantum/classical puzzle -- learning how the rules of physics in the quantum world (think smaller than microscopic) change when applied to the classical world (think every day items, like cars and trees).
In a study published in the July 1 issue of the journal Nature, Associate Professor of Physics and Astronomy Alex Rimberg and his colleagues describe one example of the microscopic quantum world influencing, even dominating they say, the behavior of something in the macroscopic classical world. They used tiny semiconducting crystals that contain two separate reservoirs of electrons to explore the different influences of both classical and quantum physics.

"We found that the motion of the crystals is not dominated by something classical like thermal motion, but instead by random quantum fluctuations in the number of electrons tunneling through the barrier; the fluctuations were the size of about 10,000 electrons," says Rimberg. "But the macroscopic world in this study also influences the quantum world, in that the vibrations of the crystal caused the electrons to tunnel in big bunches, more or less in sync with the vibrations of the crystal."

One major question in quantum physics deals with the connection between the microscopic and macroscopic worlds. Rimberg explains that scientists know that microscopic objects such as electrons obey the laws of quantum mechanics, while macroscopic objects obey Newton's laws. Researchers are still learning exactly how classical behavior emerges from quantum behavior as systems become larger and larger.

Rimberg says that the difference in size between the classical and quantum parts of thesystem described in this paper is really extreme. "To give a sense of perspective, we could imagine that the 10,000 electrons correspond to something small like a flea. To complete the analogy, the crystal would have to be the size of Mt. Everest. If we imagine the flea jumping on Mt. Everest to make it move, then the resulting vibrations would be on the order of meters."

Rimberg's future work will use nonlinear superconducting systems, different from using the semiconducting crystals in this experiment, to make very strongly quantum mechanical systems. Nonlinear classical systems can show unpredictable, chaotic behavior; the behavior of the corresponding quantum systems is not well understood. This effort will be a prelude to studying the quantum properties of mechanical resonators that are smaller than the crystals in this experiment, but definitely not microscopic either; they are the things in the murky borderland between quantum and classical regimes.

Rimberg was worked on this study with colleagues at Dartmouth, Miles Blencowe, Joel Stettenheim, Feng Pan, Mustafa Bal, and Weiwei Zue. They were joined by Madhu Thalakulam and Zhonquig Ji from Rice University; and Loren Pfeiffer and K.W. West from Bell Laboratories.

The research was funded by the U.S. Army Research Office and the National Science Foundation.

Comments

Popular posts from this blog

Evolution Of Computer Virus [infographic]

4 Free Apps For Discovering Great Content On the Go

1. StumbleUpon The granddaddy of discovering random cool stuff online, StumbleUpon will celebrate its 10th anniversary later this year — but its mobile app is less than a year old. On the web, its eight million users have spent the last decade recommending (or disliking) millions of webpages with a thumbs up / thumbs down system on a specially installed browser bar. The StumbleUpon engine then passes on recommendations from users whose interests seem similar to yours. Hit the Stumble button and you’ll get a random page that the engine thinks you’ll like. The more you like or dislike its recommendations, the more these random pages will surprise and delight. Device : iPhone , iPad , Android 2. iReddit Reddit is a self-described social news website where users vote for their favorite stories, pictures or posts from other users, then argue vehemently over their meaning in the comments section. In recent years, it has gained readers as its competitor Digg has lost them.

‘Wireless’ humans could backbone new mobile networks

People could form the backbone of powerful new mobile internet networks by carrying wearable sensors. The sensors could create new ultra high bandwidth mobile internet infrastructures and reduce the density of mobile phone base stations.Engineers from Queen’s Institute of Electronics, Communications and Information Technology are working on a new project based on the rapidly developing science of body-centric communications.Social benefits could include vast improvements in mobile gaming and remote healthcare, along with new precision monitoring of athletes and real-time tactical training in team sports, an institute release said.The researchers are investigating how small sensors carried by members of the public, in items such as next generation smartphones, could communicate with each other to create potentially vast body-to-body networks.The new sensors would interact to transmit data, providing ‘anytime, anywhere’ mobile network connectivity.Simon Cotton from the i