Skip to main content

Hunting Weapon 10,000 Years Old Found in Melting Ice Patch

Hunting Weapon 10,000 Years Old Found in Melting Ice Patch


ScienceDaily - To the untrained eye, University of Colorado at Boulder Research Associate Craig Lee's recent discovery of a 10,000-year-old wooden hunting weapon might look like a small branch that blew off a tree in a windstorm.
Nothing could be further from the truth, according to Lee, a research associate with CU-Boulder's Institute of Arctic and Alpine Research who found the atlatl dart, a spear-like hunting weapon, melting out of an ice patch high in the Rocky Mountains close to Yellowstone National Park.
Lee, a specialist in the emerging field of ice patch archaeology, said the dart had been frozen in the ice patch for 10 millennia and that climate change has increased global temperatures and accelerated melting of permanent ice fields, exposing organic materials that have long been entombed in the ice.
"We didn't realize until the early 2000s that there was a potential to find archaeological materials in association with melting permanent snow and ice in many areas of the globe," Lee said. "We're not talking about massive glaciers, we're talking about the smaller, more kinetically stable snowbanks that you might see if you go to Rocky Mountain National Park."

As glaciers and ice fields continue to melt at an unprecedented rate, increasingly older and significant artifacts -- as well as plant material, animal carcasses and ancient feces -- are being released from the ice that has gripped them for thousands of years, he said.
Over the past decade, Lee has worked with other researchers to develop a geographic information system, or GIS, model to identify glaciers and ice fields in Alaska and elsewhere that are likely to hold artifacts. They pulled together biological and physical data to find ice fields that may have been used by prehistoric hunters to kill animals seeking refuge from heat and insect swarms in the summer months.
"In these instances, what we're finding as archaeologists is stuff that was lost," Lee said. "Maybe you missed a shot and your weapon disappeared into the snowbank. It's like finding your keys when you drop them in snow. You're not going to find them until spring. Well, the spring hasn't come until these things started melting for the first time, in some instances, in many, many thousands of years."

The dart Lee found was from a birch sapling and still has personal markings on it from the ancient hunter, according to Lee. When it was shot, the 3-foot-long dart had a projectile point on one end, and a cup or dimple on the other end that would have attached to a hook on the atlatl. The hunter used the atlatl, a throwing tool about two feet long, for leverage to achieve greater velocity.
Later this summer Lee and CU-Boulder student researchers will travel to Glacier National Park to work with the Salish, Kootenai and Blackfeet tribes and researchers from the University of Wyoming to recover and protect artifacts that may have recently melted out of similar locations.
"We will be conducting an unprecedented collaboration with our Native American partners to develop and implement protocols for culturally appropriate scientific methods to recover and protect artifacts we may discover," he said.

Quick retrieval of any organic artifacts like clothing, wooden tools or weapons is necessary to save them, because once thawed and exposed to the elements they decompose quickly, he said.
An estimated 10 percent of Earth's land surface is covered with perennial snow, glaciers and ice fields, providing plenty of opportunities for exploration, Lee said. However, once organic artifacts melt out of the ice, they could be lost forever.
"Ninety-five percent of the archaeological record that we usually base our interpretations on is comprised of chip stone artifacts, ground stone artifacts, maybe old hearths, which is a fire pit, or rock rings that would have been used to stabilize a house," Lee said. "So we really have to base our understanding about ancient times on these inorganic materials. But ice patches are giving us this window into organic technology that we just don't get in other environments."

Comments

Popular posts from this blog

Evolution Of Computer Virus [infographic]

4 Free Apps For Discovering Great Content On the Go

1. StumbleUpon The granddaddy of discovering random cool stuff online, StumbleUpon will celebrate its 10th anniversary later this year — but its mobile app is less than a year old. On the web, its eight million users have spent the last decade recommending (or disliking) millions of webpages with a thumbs up / thumbs down system on a specially installed browser bar. The StumbleUpon engine then passes on recommendations from users whose interests seem similar to yours. Hit the Stumble button and you’ll get a random page that the engine thinks you’ll like. The more you like or dislike its recommendations, the more these random pages will surprise and delight. Device : iPhone , iPad , Android 2. iReddit Reddit is a self-described social news website where users vote for their favorite stories, pictures or posts from other users, then argue vehemently over their meaning in the comments section. In recent years, it has gained readers as its competitor Digg has lost them.

‘Wireless’ humans could backbone new mobile networks

People could form the backbone of powerful new mobile internet networks by carrying wearable sensors. The sensors could create new ultra high bandwidth mobile internet infrastructures and reduce the density of mobile phone base stations.Engineers from Queen’s Institute of Electronics, Communications and Information Technology are working on a new project based on the rapidly developing science of body-centric communications.Social benefits could include vast improvements in mobile gaming and remote healthcare, along with new precision monitoring of athletes and real-time tactical training in team sports, an institute release said.The researchers are investigating how small sensors carried by members of the public, in items such as next generation smartphones, could communicate with each other to create potentially vast body-to-body networks.The new sensors would interact to transmit data, providing ‘anytime, anywhere’ mobile network connectivity.Simon Cotton from the i