Skip to main content

Software System to Predict the Evolution of the Ash Cloud from the Icelandic Volcano

Software System to Predict the Evolution of the Ash Cloud from the Icelandic Volcano

Researchers at the Universidad Politécnica de Madrid's Facultad de Informática have developed a system to forecast the evolution of the ash cloud from Iceland's Eyjafjallajökull volcano.The system is based on an estimate of the volcano's daily emissions gathered using OMI, GOME-2 and SCIAMACHY satellite observations, and is available for consultation over the Internet free of charge. These emissions vary on a daily basis, although, for forecasting purposes, the emissions observed on the satellites are assumed to be constant during the forecasting or model simulation period. This is the biggest source of uncertainty, as it is not known exactly how the volcano's emissions will evolve in the future.

The system combines information on the volcano's behaviour, gathered twice a day from the above satellites, with environmental information, like wind speed and direction, air humidity, etc., that influences the evolution of the volcanic ash cloud. The system was developed based on a European-wide air quality forecasting system, also built at the Facultad de Informática. This system has been operational since 2008 and is based on MM5 (NCAR, US) and CMAQ (US EPA) models. For this new undertaking, satellite-gathered information on the emissions from the volcano has been added to the model.


Prognosis

Prediction is based on the assumption that the emitted volcanic ash cloud rises from 4.5 to 8 kilometres into the air. The system analyses the information as sulphur dioxide emissions (SO2). The daily calculations are made from the above satellite observations, and the results are visualized at three levels using Dobson units. The Dobson unit (DU) is a way of expressing the quantity of ozone present in the Earth's atmosphere, specifically the stratosphere. In actual fact, it is a measure of the thickness of the ozone layer. In the case of the volcano, this measure is used to determine the density of the ash cloud. The forecast is subject to some uncertainty because there is no way of ascertaining how the volcano will behave from one day to the next. However, the high-quality software model used has been providing forecasts of ozone and other pollutants stipulated by European Directives (and the respective national legislation) for several years based on MM5 since the year 2000 and CMAQ since 2007.

The system has been operating experimentally for several weeks and is run by the Environmental Software and Modelling Group (GMSMA) led by Prof. Roberto San José.

Comments

Popular posts from this blog

Evolution Of Computer Virus [infographic]

4 Free Apps For Discovering Great Content On the Go

1. StumbleUpon The granddaddy of discovering random cool stuff online, StumbleUpon will celebrate its 10th anniversary later this year — but its mobile app is less than a year old. On the web, its eight million users have spent the last decade recommending (or disliking) millions of webpages with a thumbs up / thumbs down system on a specially installed browser bar. The StumbleUpon engine then passes on recommendations from users whose interests seem similar to yours. Hit the Stumble button and you’ll get a random page that the engine thinks you’ll like. The more you like or dislike its recommendations, the more these random pages will surprise and delight. Device : iPhone , iPad , Android 2. iReddit Reddit is a self-described social news website where users vote for their favorite stories, pictures or posts from other users, then argue vehemently over their meaning in the comments section. In recent years, it has gained readers as its competitor Digg has lost them.

‘Wireless’ humans could backbone new mobile networks

People could form the backbone of powerful new mobile internet networks by carrying wearable sensors. The sensors could create new ultra high bandwidth mobile internet infrastructures and reduce the density of mobile phone base stations.Engineers from Queen’s Institute of Electronics, Communications and Information Technology are working on a new project based on the rapidly developing science of body-centric communications.Social benefits could include vast improvements in mobile gaming and remote healthcare, along with new precision monitoring of athletes and real-time tactical training in team sports, an institute release said.The researchers are investigating how small sensors carried by members of the public, in items such as next generation smartphones, could communicate with each other to create potentially vast body-to-body networks.The new sensors would interact to transmit data, providing ‘anytime, anywhere’ mobile network connectivity.Simon Cotton from the i