Lighter antennas cost less to boost into space and more energy-efficient antennas can reduce the size of storage batteries and solar cells, which also reduces the mass.
Metamaterials derive their unusual properties from structure rather than composition and possess exotic properties not usually found in nature.
"Working with Penn State, we decided that the first year we were going focus on applications for radio frequency antennas, where we thought we had a reasonable chance to succeed," said Lier.
According to Douglas H. Werner, professor of electrical engineering, Penn State, this is one of the first practical implementations of electromagnetic metamaterials that makes a real world device better.
"These results also help lay to rest the widely held viewpoint that metamaterials are primarily an academic curiosity and, due to their narrow bandwidth and relatively high loss, will never find their way into real-world devices," the researchers report in the current issue of Nature Materials.
They specifically designed their electromagnetic metamaterials to avoid previous limitations of narrow bandwidth and high intrinsic material loss, which results in signal loss. Their aim was not to design theoretical metamaterial-enhanced antennas, but to build a working prototype.
Comments
Post a Comment