Skip to main content

New Technique Boosts High-Power Potential for Gallium Nitride Electronics


 Gallium nitride (GaN) material holds promise for emerging high-power devices that are more energy efficient than existing technologies -- but these GaN devices traditionally break down when exposed to high voltages. Now researchers at North Carolina State University have solved the problem, introducing a buffer that allows the GaN devices to handle 10 times greater power.For future renewable technologies, such as the smart grid or electric cars, we need high-power semiconductor devices," says Merve Ozbek, a Ph.D. student at NC State and author of a paper describing the research. "And power-handling capacity is important for the development of those devices."

Previous research into developing high power GaN devices ran into obstacles, because large electric fields were created at specific points on the devices' edge when high voltages were applied -- effectively destroying the devices. NC State researchers have addressed the problem by implanting a buffer made of the element argon at the edges of GaN devices. The buffer spreads out the electric field, allowing the device to handle much higher voltages.

The researchers tested the new technique on Schottky diodes -- common electronic components -- and found that the argon implant allowed the GaN diodes to handle almost seven times higher voltages. The diodes that did not have the argon implant broke down when exposed to approximately 250 volts. The diodes with the argon implant could handle up to 1,650 volts before breaking down.

"By improving the breakdown voltage from 250 volts to 1,650 volts, we can reduce the electrical resistance of these devices a hundredfold," says Dr. Jay Baliga, Distinguished University Professor of Electrical and Computer Engineering at NC State and co-author of the paper. "That reduction in resistance means that these devices can handle ten times as much power."

The paper, "Planar, Nearly Ideal Edge Termination Technique for GaN Devices," is forthcoming from IEEE's Electron Device Letters. The research was supported by NC State's Future Renewable Electric Energy Delivery and Management Systems Center, with funding from the National Science Foundation ”

Comments

Popular posts from this blog

4 Free Apps For Discovering Great Content On the Go

1. StumbleUpon The granddaddy of discovering random cool stuff online, StumbleUpon will celebrate its 10th anniversary later this year — but its mobile app is less than a year old. On the web, its eight million users have spent the last decade recommending (or disliking) millions of webpages with a thumbs up / thumbs down system on a specially installed browser bar. The StumbleUpon engine then passes on recommendations from users whose interests seem similar to yours. Hit the Stumble button and you’ll get a random page that the engine thinks you’ll like. The more you like or dislike its recommendations, the more these random pages will surprise and delight. Device : iPhone , iPad , Android 2. iReddit Reddit is a self-described social news website where users vote for their favorite stories, pictures or posts from other users, then argue vehemently over their meaning in the comments section. In recent years, it has gained readers as its competitor Digg has lost them. ...

Evolution Of Computer Virus [infographic]

‘Wireless’ humans could backbone new mobile networks

People could form the backbone of powerful new mobile internet networks by carrying wearable sensors. The sensors could create new ultra high bandwidth mobile internet infrastructures and reduce the density of mobile phone base stations.Engineers from Queen’s Institute of Electronics, Communications and Information Technology are working on a new project based on the rapidly developing science of body-centric communications.Social benefits could include vast improvements in mobile gaming and remote healthcare, along with new precision monitoring of athletes and real-time tactical training in team sports, an institute release said.The researchers are investigating how small sensors carried by members of the public, in items such as next generation smartphones, could communicate with each other to create potentially vast body-to-body networks.The new sensors would interact to transmit data, providing ‘anytime, anywhere’ mobile network connectivity.Simon Cotton from the i...