Skip to main content

Toward Computers That Fit on a Pen Tip: New Technologies Usher in the Millimeter-Scale Computing Era




  A prototype implantable eye pressure monitor for glaucoma patients is believed to contain the first complete millimeter-scale computing system.And a compact radio that needs no tuning to find the right frequency could be a key enabler to organizing millimeter-scale systems into wireless sensor networks. These networks could one day track pollution, monitor structural integrity, perform surveillance, or make virtually any object smart and trackable.

Both developments at the University of Michigan are significant milestones in the march toward millimeter-scale computing, believed to be the next electronics frontier.

Researchers are presenting papers on each at the International Solid-State Circuits Conference (ISSCC) in San Francisco. The work is being led by three faculty members in the U-M Department of Electrical Engineering and Computer Science: professors Dennis Sylvester and David Blaauw, and assistant professor David Wentzloff.

Bell's Law and the promise of pervasive computing

Nearly invisible millimeter-scale systems could enable ubiquitous computing, and the researchers say that's the future of the industry. They point to Bell's Law, a corollary to Moore's Law. (Moore's says that the number of transistors on an integrated circuit doubles every two years, roughly doubling processing power.)

Bell's Law says there's a new class of smaller, cheaper computers about every decade. With each new class, the volume shrinks by two orders of magnitude and the number of systems per person increases. The law has held from 1960s' mainframes through the '80s' personal computers, the '90s' notebooks and the new millennium's smart phones.

"When you get smaller than hand-held devices, you turn to these monitoring devices," Blaauw said. "The next big challenge is to achieve millimeter-scale systems, which have a host of new applications for monitoring our bodies, our environment and our buildings. Because they're so small, you could manufacture hundreds of thousands on one wafer. There could be 10s to 100s of them per person and it's this per capita increase that fuels the semiconductor industry's growth."

The first complete millimeter-scale system

Blaauw and Sylvester's new system is targeted toward medical applications. The work they present at ISSCC focuses on a pressure monitor designed to be implanted in the eye to conveniently and continuously track the progress of glaucoma, a potentially blinding disease. (The device is expected to be commercially available several years from now.)

Comments

Popular posts from this blog

Evolution Of Computer Virus [infographic]

4 Free Apps For Discovering Great Content On the Go

1. StumbleUpon The granddaddy of discovering random cool stuff online, StumbleUpon will celebrate its 10th anniversary later this year — but its mobile app is less than a year old. On the web, its eight million users have spent the last decade recommending (or disliking) millions of webpages with a thumbs up / thumbs down system on a specially installed browser bar. The StumbleUpon engine then passes on recommendations from users whose interests seem similar to yours. Hit the Stumble button and you’ll get a random page that the engine thinks you’ll like. The more you like or dislike its recommendations, the more these random pages will surprise and delight. Device : iPhone , iPad , Android 2. iReddit Reddit is a self-described social news website where users vote for their favorite stories, pictures or posts from other users, then argue vehemently over their meaning in the comments section. In recent years, it has gained readers as its competitor Digg has lost them.

‘Wireless’ humans could backbone new mobile networks

People could form the backbone of powerful new mobile internet networks by carrying wearable sensors. The sensors could create new ultra high bandwidth mobile internet infrastructures and reduce the density of mobile phone base stations.Engineers from Queen’s Institute of Electronics, Communications and Information Technology are working on a new project based on the rapidly developing science of body-centric communications.Social benefits could include vast improvements in mobile gaming and remote healthcare, along with new precision monitoring of athletes and real-time tactical training in team sports, an institute release said.The researchers are investigating how small sensors carried by members of the public, in items such as next generation smartphones, could communicate with each other to create potentially vast body-to-body networks.The new sensors would interact to transmit data, providing ‘anytime, anywhere’ mobile network connectivity.Simon Cotton from the i