Skip to main content

World's Smallest Magnetic Field Sensor: Researchers Explore Using Organic Molecules as Electronic Components


 Further development of modern information technology requires computer capacities of increased efficiency at reasonable costs. In the past, integration density of the relevant electronic components was increased constantly. In continuation of this strategy, future components will have to reach the size of individual molecules. Researchers from the KIT Center for Functional Nanostructures (CFN) and IPCMS have now come closer to reaching this target.For the first time, a team of scientists from KIT and the Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) have now succeeded in combining the concepts of spin electronics and molecular electronics in a single component consisting of a single molecule. Components based on this principle have a special potential, as they allow for the production of very small and highly efficient magnetic field sensors for read heads in hard disks or for non-volatile memories in order to further increase reading speed and data density.

Use of organic molecules as electronic components is being investigated extensively at the moment. Miniaturization is associated with the problem of the information being encoded with the help of the charge of the electron (current on or off). However, this requires a relatively high amount of energy. In spin electronics, the information is encoded in the intrinsic rotation of the electron, the spin. The advantage is that the spin is maintained even when switching off current supply, which means that the component can store information without any energy consumption.

The German-French research team has now combined these concepts. The organic molecule H2-phthalocyanin that is also used as blue dye in ball pens exhibits a strong dependence of its resistance, if it is trapped between spin-polarized, i.e. magnetic electrodes. This effect was first observed in purely metal contacts by Albert Fert and Peter Grünberg. It is referred to as giant magnetoresistance and was acknowledged by the Nobel Prize for Physics in 2007.

The giant magnetoresistance effect on single molecules was demonstrated at KIT within the framework of a combined experimental and theoretical project of CFN and a German-French graduate school in cooperation with the IPCMS, Strasbourg. The results of the scientists are now presented in the journal Nature Nanotechnology.

Karlsruhe Institute of Technology (KIT) is a public corporation and state institution of Baden-Wuerttemberg, Germany. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

Comments

Popular posts from this blog

Top 5 Women Who Impacted Technology in 2010

Katie Stanton, International Strategist for Twitter Katie Stanton has impressively long names of companies in her resume. They include the White House, Google Inc, and her latest addition is Twitter. Her remit is working on Twitter’s international strategy and her experience in social media will be a key asset to the company. Katie has a history of working in technology, and her knowledge of departmental laws will help Twitter work alongside government agencies, as she’ll be spearheading the free information approach, especially after the Wikileaks incident. Stanton has been a key player in the techsphere for some time, and this extends to her private life. Following the Haiti disaster she worked with a group of engineers to create a free texting service to help those in need and she is constantly in demand as an expert in both social media and government policy.
Caterina Fake, Co-Founder of Flickr and Hunch Despite having a surname which sounds like a pseudonym for a spy (it’…

AT&T MiFi 2372 review

In the week or so that I have been testing the AT&T MiFi 2372 by Novatel Wireless, it has already saved no less than three lives. First, it saved my cable guy’s life. You see, Time Warner Cable provides the worst home Internet service I have ever experienced. I can’t even think of a close second. If providing terrible home Internet service was a sport, Time Warner Cable would be on its tenth consecutive undefeated season. Forget the fact that my upload speed is capped at 60Kbps and I’m lucky if I can get half that — it has been months since I’ve gone through a full day without at least one service interruption. Months. Unfortunately, Time Warner Cable has an exclusive contract with my building so I have no choice but to endure its abysmal service. Last week, as a Time Warner Cable technician entered my home for the sixth time in two months, I realized that this certainly would have spelled serious trouble had it not been for my trusty new back up device. Before the Mi…

facebook vs google+